If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+2y=16
We move all terms to the left:
y^2+2y-(16)=0
a = 1; b = 2; c = -16;
Δ = b2-4ac
Δ = 22-4·1·(-16)
Δ = 68
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{68}=\sqrt{4*17}=\sqrt{4}*\sqrt{17}=2\sqrt{17}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{17}}{2*1}=\frac{-2-2\sqrt{17}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{17}}{2*1}=\frac{-2+2\sqrt{17}}{2} $
| (2x=31)=(7x-24) | | 14x-6x-16=24 | | -2(x+3)=-2(x+1)- | | –3(t−14)=–12 | | 2b-2+8b=24 | | -4(q-95)=52 | | 13-9p=-20p-2+12p | | (37b-3)-9(4b+3)=-2 | | 3x+66=2x+74 | | 3x-2=3(x-6) | | 4b-4=19 | | -2t=3t+20 | | (5x+4)+(3x+7)=x | | -2/3y−3/4=5 | | 5(3n+5)=9(8n+5)+1 | | -3z-10=z+10 | | 6-2x=10-6x | | (11x-15)(5x-13)=180 | | 4+7x=3x-30 | | -10-8t+4=10-6t | | -p+8–2(p–6)=10p+7 | | 10(x+3)-(9x-4)=x5+3 | | 4x-2x(x-5)=-4+5x-4 | | 3(3v-2)+2v+2=6(v+4)-2v | | a+(2*a+9)=63 | | 6=12+5/6x | | 2.3+4x=42 | | 4x-2x(x-5)=4+5x-4 | | -8y=31=7 | | 44+n=9 | | (-37b-3)-9(4b+3)=-2 | | -4(-5h+1)=2(10h+8) |